## LOW-TEMPERATURE HEAT CAPACITIES AND STANDARD MOLAR ENTHALPY OF FORMATION OF ASPIRIN

# F. Xu<sup>1</sup>, L.-X. Sun<sup>1\*</sup>, Z.-C. Tan<sup>1</sup>, J.-G. Liang<sup>2</sup>, Y.-Y. Di<sup>1</sup>, Q.-F. Tian<sup>1</sup> and T. Zhang<sup>1</sup>

<sup>1</sup>Material Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
<sup>2</sup>Hunan Institute of Drug Detection, Changsha 410001, P.R. China

(Received June 24, 2003; in revised form February 3, 2004)

## Abstract

Molar heat capacities ( $C_{p,m}$ ) of aspirin were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 78 to 383 K. No phase transition was observed in this temperature region. The polynomial function of  $C_{p,m}$  vs. T was established in the light of the low-temperature heat capacity measurements and least square fitting method. The corresponding function is as follows: for 78 K $\leq T\leq$ 383 K,  $C_{p,m}/J$  mol<sup>-1</sup> K<sup>-1</sup>=19.086 $X^4$ +15.951 $X^3$ -5.2548 $X^2$ +90.192X+176.65, [X=(T-230.50/152.5)]. The thermodynamic functions on the base of the reference temperature of 298.15 K, { $\Delta H_T - \Delta H_{298.15}$ } and { $S_T - S_{298.15}$ }, were derived.

Combustion energy of aspirin  $(\Delta_c U_m)$  was determined by static bomb combustion calorimeter. Enthalpy of combustion  $(\Delta_c H_m^0)$  and enthalpy of formation  $(\Delta_f H_m^0)$  were derived through  $\Delta_c U_m$  as  $-(3945.26\pm2.63)$  kJ mol<sup>-1</sup> and  $-(736.41\pm1.30)$  kJ mol<sup>-1</sup>, respectively.

Keywords: adiabatic calorimetry, aspirin, combustion calorimetry, enthalpy of formation, heat capacity

## Introduction

Aspirin is a kind of antiphlogistic drug which could relieve pain and cure asthma and heart disease [1] and has been paid much attention because of its remarkable curative effect. Most publications on aspirin and its derivatives are concerned with their dissolution kinetics, release mechanism, absorbing processes, incompatibility of drug-excipient and its pharmacology in the body [2–6]. Zhang [7] reported on thermal stability and thermal kinetics of aspirin. Habib [8] presented results of kinetics of hydrolysis and stabilization of aspirin in liposome formulation.

1388–6150/2004/ \$ 20.00 © 2004 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

<sup>\*</sup> Author for correspondence: E-mail: lxsun@dicp.ac.cn

Heat capacity measurements of materials have attracted many researchers' attentions [9, 10]. Thermal properties of aspirin, for example, molar heat capacity and enthalpy of formation, are significant to understand thermal stability of aspirin and prepare new drug from it, respectively. We have studied the thermodynamic properties of berberine sulphate by using thermal analysis and adiabatic calorimetry [11]. Up to now, only melting point of aspirin has been reported as  $410\pm10$  K by NIST. However, the molar heat capacities and enthalpy of formation for this substance have not been reported. In this paper, the low-temperature heat capacities and energy of combustion of aspirin were determined using a small sample precision automated adiabatic calorimeter and a static bomb combustion calorimeter. The enthalpy of formation was derived through energy of combustion for aspirin.

## **Experimental**

#### Material

Aspirin (CAS 50-78-2) was supplied by Hunan Institute of Drug Detection, P. R. China. Quantitative analysis was performed using titration [12]. The purity of aspirin to be measured is 99.5%.

#### Adiabatic calorimetry

Heat capacity measurement of aspirin was carried out by a high-precision automatic adiabatic calorimeter over the temperature range from 78 to 400 K. The construction and principle of the calorimeter have been described previously in detail [13–18]. Briefly, the calorimeter mainly comprises a sample cell, a platinum resistance thermometer, an electric heater, two adiabatic shields, two sets of differential thermocouples and a high vacuum system. The samples were cooled by liquid nitrogen. The sample cell was made of gold-plated copper and had an internal volume of about 6 cm<sup>3</sup>. Four gold-plated copper vanes of 0.2 mm thickness were put into the cell to promote heat distribution between the sample and the cell. The platinum resistance thermometer was inserted into the copper sheath, which was soldered at the bottom of the sample cell. The heater wire was wound on the side surface of the cell. The lid of the cell with a copper capillary was sealed to the sample cell with adhesive after the sample was loaded in it. The air on the cell was evacuated and a small amount of helium gas (0.1 MPa) was introduced into it to enhance the heat transfer within the cell. The temperature differences between the sample cell and the inner shield, and between the inner and outer shields were monitored by two sets of six-junction chromel-copper (Ni 55%, Cu 45%) thermocouples, and controlled by two sets of DWT-702 precision temperature controller (manufactured by Shanghai No.6 Automated Instrumentation Workshop). The electrical energy introduced into the sample cell and the equilibrium temperature of the cell after the energy input were automatically picked up by use of the Data Acquisition/Switch Unit (Model 34970A, Agilent, USA), and processed on line by a computer. To verify the reliability of the calorimeter, the molar heat capacity of the reference standard material ( $\alpha$ -Al<sub>2</sub>O<sub>3</sub>) was

measured over the same temperature range. The deviation of our experimental results from the recommended values [19] of the former National Bureau of Standards lies within  $\pm 0.2\%$  over the investigated temperature range.

#### Static bomb combustion calorimeter

For the measurements of the enthalpy of combustion of aspirin, an isoperibol macrocalorimeter with a static bomb and a stirred water bath was used. The construction and principle of the static bomb combustion calorimeter have been described in [20, 21]. The aspirin sample to be measured was pressed into pellets of mass about 1 g and was burned in oxygen (99.99%) at p=3.0 MPa pressure. To ensure equilibrium in the final state, 1 mL of distilled water was added to the bomb. The energy equivalent ( $\varepsilon$ ) of the bomb combustion calorimeter was determined from the combustion of benzoic acid (SRM 39I, NIST) which has a massic energy of combustion, of  $-(26434\pm3)$  J  $g^{-1}$ , under standard bomb conditions. The calibration results were corrected to give the energy equivalent ( $\varepsilon$ ) corresponding to the average mass of water added to the calorimeter: 3850 g. From ten calibration experiments,  $\varepsilon=(13572.22\pm0.98)$  J K<sup>-1</sup>, where the uncertainty quoted is the standard deviation of the mean. The amount of nitric acid formed during the reaction was determined by titration with standardized NaOH (*aq*). The energy of combustion was automatically picked up by the Data Acquisition/Switch Unit (Model 34970A, Agilent, USA), and processed on line with a computer.

## **Results and discussion**

Before low-temperature heat capacity was measured, TG and DSC measurements were performed for aspirin. The results indicated no mass loss was observed before 420 K and melting temperature was 409.2±0.2 K for this substance.

Low-temperature heat capacities of aspirin were measured by the adiabatic calorimeter over the temperature range from 78 to 383 K (Fig. 1 and Table 1). The temperature increment for each experimental point was about 3 K in the whole temperature range. No phase transition was observed in this temperature region. The smooth value of molar heat capacities and other thermodynamic properties of aspirin (relative to 298.15 K) are listed in Table 2, where

$$H_{\rm T} - H_{298.15} = \int_{298.15}^{1} C_{\rm p,m} dT$$
$$S_{\rm T} - S_{298.15} = \int_{298.15}^{\rm T} \frac{C_{\rm p,m}}{T} dT$$

The molar heat capacities of the aspirin in solid state were fitted to the following polynomial of heat capacities vs. reduced temperature (X) by means of the least square fitting method,

$$C_{\rm p, m}/{\rm J} \, {\rm mol}^{-1} \, {\rm K}^{-1} = 19.086 X^4 + 15.951 X^3 - 5.2548 X^2 + 90.192 X + 176.65$$

| <i>T</i> /K | $C_{\rm p,m}$ |
|-------------|---------------|-------------|---------------|-------------|---------------|-------------|---------------|
| 78.436      | 83.903        | 144.770     | 123.94        | 215.299     | 166.84        | 296.667     | 216.97        |
| 80.321      | 84.713        | 147.320     | 125.38        | 217.349     | 167.98        | 299.863     | 218.73        |
| 82.124      | 85.921        | 149.842     | 127.01        | 219.381     | 169.61        | 309.288     | 224.81        |
| 83.956      | 86.384        | 152.343     | 128.56        | 221.416     | 171.05        | 301.093     | 221.11        |
| 85.716      | 87.464        | 154.821     | 129.90        | 223.420     | 172.17        | 304.289     | 221.01        |
| 87.448      | 89.016        | 157.282     | 131.30        | 225.429     | 173.77        | 307.485     | 223.11        |
| 89.153      | 89.303        | 159.713     | 132.80        | 227.420     | 175.28        | 310.599     | 225.47        |
| 90.832      | 90.338        | 162.134     | 134.59        | 229.387     | 177.27        | 313.795     | 227.12        |
| 92.485      | 91.502        | 164.529     | 135.95        | 231.272     | 178.72        | 316.909     | 229.30        |
| 94.114      | 92.946        | 166.911     | 137.43        | 233.239     | 179.35        | 320.023     | 231.89        |
| 95.724      | 93.937        | 169.271     | 138.61        | 235.205     | 180.59        | 323.137     | 234.21        |
| 97.310      | 94.716        | 171.608     | 139.69        | 237.172     | 181.42        | 326.251     | 237.86        |
| 98.876      | 95.889        | 173.933     | 140.91        | 239.057     | 183.28        | 329.283     | 239.33        |
| 100.424     | 96.180        | 176.232     | 143.12        | 240.942     | 184.01        | 332.397     | 242.63        |
| 101.955     | 97.045        | 178.497     | 144.93        | 242.827     | 184.84        | 335.429     | 244.33        |
| 103.467     | 97.936        | 180.783     | 145.69        | 244.712     | 186.08        | 338.543     | 246.80        |
| 104.964     | 98.959        | 183.046     | 146.72        | 246.596     | 187.64        | 341.576     | 249.75        |
| 106.445     | 99.891        | 185.284     | 148.04        | 249.301     | 188.61        | 344.584     | 252.77        |
| 107.911     | 100.71        | 187.519     | 149.43        | 252.906     | 190.20        | 347.640     | 256.66        |
| 109.363     | 101.69        | 189.731     | 151.50        | 256.430     | 192.58        | 350.590     | 259.63        |
| 111.590     | 102.61        | 191.934     | 152.10        | 259.954     | 195.41        | 353.622     | 262.51        |
| 114.587     | 104.93        | 194.121     | 153.24        | 263.396     | 197.28        | 356.572     | 266.38        |
| 117.530     | 106.76        | 196.294     | 154.86        | 266.920     | 199.66        | 359.604     | 270.73        |
| 120.425     | 108.61        | 198.455     | 156.45        | 270.280     | 200.46        | 362.555     | 273.66        |
| 123.277     | 110.39        | 200.608     | 157.65        | 273.722     | 202.32        | 365.505     | 276.46        |
| 126.087     | 112.08        | 202.745     | 158.71        | 277.082     | 205.75        | 368.373     | 279.36        |
| 128.858     | 113.70        | 204.867     | 160.14        | 280.359     | 206.64        | 371.241     | 282.68        |
| 131.593     | 115.42        | 206.979     | 161.33        | 283.719     | 209.30        | 374.109     | 286.20        |
| 134.294     | 117.82        | 209.077     | 162.32        | 286.997     | 212.30        | 376.814     | 288.69        |
| 136.961     | 119.34        | 211.159     | 163.49        | 290.275     | 213.24        | 379.518     | 291.18        |
| 139.592     | 121.00        | 213.232     | 165.51        | 293.471     | 214.38        | 382.059     | 293.97        |
| 142 196     | 122 44        |             |               |             |               |             |               |

**Table 1** The experimental molar heat capacities  $(C_{p,m} \text{ in } J \text{ mol}^{-1} \text{ K}^{-1})$  of aspirin in the temperature range of 78–383 K (molar mass M=180.16)

| Table 2 | 2 Thermodynamic 1                                                 | properties of aspirin                       |                                                          |        |                                                                     |                                             |                                                              |
|---------|-------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|--------|---------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|
| T/K     | $C_{\mathrm{p,m}}/\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ | $H_{\rm T}-H_{298.15}/{ m J}~{ m mol}^{-1}$ | $S_{\rm T}-S_{298.15}/J \ {\rm mol}^{-1} \ {\rm K}^{-1}$ | T/K    | $C_{\mathrm{p,m}}/\mathrm{J} \ \mathrm{mol}^{-1} \ \mathrm{K}^{-1}$ | $H_{\rm T}-H_{298.15}/{ m J}~{ m mol}^{-1}$ | $S_{\rm T} - S_{298.15} / J \text{ mol}^{-1} \text{ K}^{-1}$ |
| 78      | 84.338                                                            | -32933                                      | -181.11                                                  | 235    | 179.31                                                              | -12457                                      | -46.942                                                      |
| 80      | 85.296                                                            | -32764                                      | -179.02                                                  | 240    | 182.25                                                              | -11557                                      | -43.144                                                      |
| 85      | 87.776                                                            | -32334                                      | -173.86                                                  | 245    | 185.19                                                              | -10642                                      | -39.362                                                      |
| 90      | 90.372                                                            | -31891                                      | -168.81                                                  | 250    | 188.14                                                              | -9713.1                                     | -35.594                                                      |
| 95      | 93.070                                                            | -31434                                      | -163.86                                                  | 255    | 191.08                                                              | -8769.4                                     | -31.841                                                      |
| 100     | 95.860                                                            | -30964                                      | -159.02                                                  | 260    | 194.04                                                              | -7810.9                                     | -28.103                                                      |
| 105     | 98.732                                                            | -30480                                      | -154.26                                                  | 265    | 197.02                                                              | -6837.7                                     | -24.378                                                      |
| 110     | 101.67                                                            | -29981                                      | -149.58                                                  | 270    | 200.02                                                              | -5849.6                                     | -20.667                                                      |
| 115     | 104.68                                                            | -29467                                      | -144.98                                                  | 275    | 203.06                                                              | -4846.4                                     | -16.969                                                      |
| 120     | 107.73                                                            | -28939                                      | -140.45                                                  | 280    | 206.13                                                              | -3828.1                                     | -13.284                                                      |
| 125     | 110.83                                                            | -28395                                      | -135.98                                                  | 285    | 209.25                                                              | -2794.4                                     | -9.6107                                                      |
| 130     | 113.96                                                            | -27835                                      | -131.57                                                  | 290    | 212.43                                                              | -1745.0                                     | -5.9484                                                      |
| 135     | 117.13                                                            | -27260                                      | -127.22                                                  | 295    | 215.67                                                              | -679.58                                     | -2.2962                                                      |
| 140     | 120.31                                                            | -26669                                      | -122.91                                                  | 298.15 | 217.76                                                              | 0                                           | 0                                                            |
| 145     | 123.51                                                            | -26063                                      | -118.66                                                  | 300    | 219.00                                                              | 402.16                                      | 1.3469                                                       |
| 150     | 126.71                                                            | -25440                                      | -114.44                                                  | 305    | 222.40                                                              | 1500.6                                      | 4.9822                                                       |

485

| Table 2     | 2 Continued                                                         |                                             |                                                          |     |                                                        |                                             |                                                              |
|-------------|---------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|-----|--------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|
| <i>T</i> /K | $C_{\mathrm{p,m}}/\mathrm{J} \mathrm{\ mol}^{-1} \mathrm{\ K}^{-1}$ | $H_{\rm T}-H_{298.15}/{ m J}~{ m mol}^{-1}$ | $S_{\rm T}-S_{298,15}/J \text{ mol}^{-1} \text{ K}^{-1}$ | T/K | $C_{\mathrm{p,m/J}} \mathrm{mol}^{-1} \mathrm{K}^{-1}$ | $H_{\rm T}-H_{298.15}/{ m J}~{ m mol}^{-1}$ | $S_{\rm T} - S_{298.15} / J \text{ mol}^{-1} \text{ K}^{-1}$ |
| 155         | 129.92                                                              | -24801                                      | -110.26                                                  | 310 | 225.91                                                 | 2616.3                                      | 8.6112                                                       |
| 160         | 133.13                                                              | -24147                                      | -106.12                                                  | 315 | 229.52                                                 | 3749.7                                      | 12.235                                                       |
| 165         | 136.33                                                              | -23476                                      | -102.01                                                  | 320 | 233.26                                                 | 4901.4                                      | 15.857                                                       |
| 170         | 139.52                                                              | -22789                                      | -97.930                                                  | 325 | 237.13                                                 | 6072.0                                      | 19.477                                                       |
| 175         | 142.70                                                              | -22087                                      | -93.879                                                  | 330 | 241.15                                                 | 7262.2                                      | 23.099                                                       |
| 180         | 145.86                                                              | -21369                                      | -89.854                                                  | 335 | 245.33                                                 | 8472.9                                      | 26.726                                                       |
| 185         | 149.00                                                              | -20635                                      | -85.854                                                  | 340 | 249.68                                                 | 9704.7                                      | 30.359                                                       |
| 190         | 152.12                                                              | -19886                                      | -81.877                                                  | 345 | 254.22                                                 | 10959                                       | 34.003                                                       |
| 195         | 155.22                                                              | -19121                                      | -77.921                                                  | 350 | 258.97                                                 | 12236                                       | 37.660                                                       |
| 200         | 158.30                                                              | -18341                                      | -73.985                                                  | 355 | 263.94                                                 | 13537                                       | 41.335                                                       |
| 205         | 161.36                                                              | -17545                                      | -70.069                                                  | 360 | 269.14                                                 | 14864                                       | 45.033                                                       |
| 210         | 164.40                                                              | -16734                                      | -66.172                                                  | 365 | 274.60                                                 | 16217                                       | 48.756                                                       |
| 215         | 167.41                                                              | -15908                                      | -62.293                                                  | 370 | 280.33                                                 | 17598                                       | 52.511                                                       |
| 220         | 170.41                                                              | -15068                                      | -58.430                                                  | 375 | 286.35                                                 | 19008                                       | 56.303                                                       |
| 225         | 173.39                                                              | -14212                                      | -54.585                                                  | 380 | 292.67                                                 | 20449                                       | 60.138                                                       |
| 230         | 176.35                                                              | -13342                                      | -50.755                                                  | 382 | 295.29                                                 | 21034                                       | 61.685                                                       |
|             |                                                                     |                                             |                                                          |     |                                                        |                                             |                                                              |

J. Therm. Anal. Cal., 76, 2004

#### XU et al.: FORMATION OF ASPIRIN

486



Fig. 1 Experimental molar heat capacities of aspirin as a function of temperature

where  $X=\{T-[(T_{max}+T_{min})/2]/[(T_{max}-T_{min})/2]\}$ , when  $T_{max}=383$  K and  $T_{min}=78$  K, X=(T-230.5)/152.5; the correlation coefficient of the fitting,  $R^2=0.9998$ . This equation is valid in the temperature range from 78 to 383 K. The standard deviation of the experimental points from the smoothed values in this temperature region is within  $\pm 0.5\%$ .

The energy of combustion of aspirin was measured by means of a static bomb combustion calorimeter and calculated from following equation:

$$\Delta_{\rm c} U_{\rm m}/{\rm J} \, {\rm mol}^{-1} = (\epsilon \Delta T - aG - 59.7 \nu c)M/W$$

where  $\varepsilon$  /J K<sup>-1</sup>, is the energy equivalent of the static bomb calorimeter;  $\Delta T/K$ , the temperature increment of the calorimeter corrected; *a*/cm, length of Ni wire consumed; *G*/J cm<sup>-1</sup>, enthalpy of combustion of Ni wire as 2.929 J cm<sup>-1</sup>; -59.7/kJ mol<sup>-1</sup>, molar enthalpy of formation of HNO<sub>3</sub> (*aq*) from (1/2)N<sub>2</sub>(*g*), (5/4).O<sub>2</sub>(*g*), and (1/2)H<sub>2</sub>O(*l*) [22]; v/mL, volume of NaOH consumed for titration of formation of HNO<sub>3</sub>; *c*/mol L<sup>-1</sup>, concentration of NaOH; *M*/g, molar mass of the sample; *W*/g, mass of the sample. The results of energy of combustion were given in Table 3.

| e e                                                | m I I I I M                                            | - F                                                         |
|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| $-\Delta_{\rm c}U_{\rm m}/{\rm kJ}~{\rm mol}^{-1}$ | $-\Delta_{\rm c}H_{\rm m}^{0}/{\rm kJ}~{\rm mol}^{-1}$ | $-\Delta_{\rm f} H_{\rm m}^{\rm 0}/{\rm kJ}~{\rm mol}^{-1}$ |
| 3943.78                                            | 3943.78                                                | 737.89                                                      |
| 3946.35                                            | 3946.35                                                | 735.32                                                      |
| 3948.87                                            | 3948.87                                                | 732.80                                                      |
| 3945.40                                            | 3945.40                                                | 736.27                                                      |
| 3941.92                                            | 3941.92                                                | 739.75                                                      |
|                                                    | Mean value and standard deviation of the m             | ean                                                         |
| 3945.26 2.63                                       | 3945.26 2.63                                           | 736.41 1.30                                                 |

**Table 3** Individual values of the molar energy of combustion  $\Delta_c U_m$ , molar enthalpy of combustion  $\Delta_c H_m^0$  and molar enthalpy of formation  $\Delta_c H_m^0$  for aspirin

The standard molar enthalpy of combustion ( $\Delta_c H_m^0$ , at 298.15 K) and standard molar enthalpy of formation ( $\Delta_f H_m^0$ ) of aspirin were derived by the following formulas:

$$C_{9}H_{8}O_{4}(S)+9O_{2}(g)=9CO_{2}(g)+4H_{2}O(l)$$
$$\Delta_{c}H_{m}^{0}=\Delta_{c}U_{m}+\Delta n RT$$
$$\Delta_{f}H_{m}^{0} (C_{9}H_{8}O_{4}, S)=[9\Delta_{f}H_{m}^{0}(CO_{2}, g)+4\Delta_{f}H_{m}^{0}(H_{2}O, l)]-\Delta_{c}H_{m}^{0}$$

where  $\Delta n = n_g(\text{product}) - n_g(\text{reactant})$ ;  $R = 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ ; T = 298.15 K;  $\Delta_f H_m^0 (\text{CO}_2, \text{ g}) = -(393.51 \pm 0.13) \text{ kJ mol}^{-1} [23]$ ;  $\Delta_f H_m^0 (\text{H}_2\text{O}, l) = -(285.830 \pm 0.042) \text{ kJ mol}^{-1} [23]$ . The results are also presented in Table 3.

\* \* \*

The authors gratefully acknowledge the National Nature Science Foundation of China for financial support to this work under Grant NSFC No. 20073047.

## References

- 1 R. Altman, A. Scazziota and J. C. Fu, Thromb Res., 51 (1988) 259.
- 2 G. P. McMahon and M. T. Kelly, Analytical Chemistry, 70 (1998) 409.
- 3 J. Wang and R. H. Zhang, Yaoxue Xuebao, 35 (2000) 461.
- 4 O. M. N. Al-Gohary and R. S. Al-Kassas, Pharm. Acta Helv., 74 (2000) 351.
- 5 N. A. Chronos, D. J. Wilson and S. L. Janes, Clin. Sci., 87 (1994) 575.
- 6 S. Wissing, D. Q. M. Craig, S. A. Barker and W. D. Moore, International J. Pharmaceutics, 199 (2000) 141.
- 7 J. Zhang, S. J. Wu and D. H. Chen, J. South-Central Uni. Nationalities (Nat. Sci. Edition), 21 (2002) 21.
- 8 M. J. Habib and J. A. Roger, International J. Pharmaceutics, 44 (1988) 235.
- 9 H. Kawaji, M. Takematsu, T. Tojo, T. Atake, A. Hirano and R. Kanno, J. Therm. Anal. Cal., 68 (2002) 833.
- 10 N. Sakisato, A. Inaba and T. Matsuo, J. Therm. Anal. Cal., 70 (2002) 353.
- 11 Xu, L. X. Sun, Z. C. Tan, Z. D. Nan, P. Yu and T. Zhang, J. Therm. Anal. Cal., 74 (2003) 335.
- 12 Chinese Pharmacopoeia, 2000, p. 327.
- 13 Z. C. Tan, G. Y. Sun, Y. Sun, A. X. Yin, W. B. Wang, J. C. Ye and L. X. Zhou, J. Thermal Anal., 45 (1995) 59.
- 14 B. P. Liu, Z. C. Tan, Z. D. Nan, P. Liu, L. X. Sun, F. Xu and X. Z. Lan, J. Therm. Anal. Cal., 71 (2003) 623.
- 15 L. Wang, Z. C. Tan, S. H. Meng, D. B. Liang, S. J. Ji and Z. K. Hei, J. Therm. Anal. Cal., 66 (2001) 409.
- 16 Z. C. Tan, B. Xue, S.-W. Lu, S.-H. Meng, X.-H. Yuan and Y.-J. Song, J. Therm. Anal. Cal., 63 (2000) 297.
- 17 B. P. Liu, Z. C. Tan, J. I. Lu, X. Z. Lan, L.X. Sun, F. Xu, P. Yu and Jun Xing, Thermochim. Acta, 397 (2003) 67.
- 18 Z. C. Tan, L. X. Sun, S. Meng, L. Li, F. Xu, P. Yu, B. P. Liu and J. B. Zhang, J. Chem. Thermodyn., 34 (2002) 1417.

J. Therm. Anal. Cal., 76, 2004

488

- 19 D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein and E. D. West, J. Res. Nat. Bur. Stand., 87 (1982) 159.
- 20 L. M. Zhang, Z. C. Tan, S. D. Wang and D. Y. Wu, Thermochim. Acta, 299 (1997) 13.
- 21 X. M. Wu, Z. C. Tan, S. H. Meng, C. X. Sun, F. D. Wang and S. S. Qu, Thermochim. Acta, 359 (2000) 103.
- 22 D. D. Waeman, W. H. Evans and V. B. Paskes, The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Ref. Data, 1982, II (Suppl. 2).
- 23 J. D. Cox, J. Chem. Thermodyn., 10 (1978) 903.